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Abstract: Accurate estimates of evapotranspiration (ET) in arid ecosystems are important for sustainable
water resource management due to competing water demands between human and ecological
environments. Several empirical remotely sensed ET models have been constructed and their potential
for regional scale ET estimation in arid ecosystems has been demonstrated. Generally, these models
were built using combined measured ET and corresponding remotely sensed and meteorological
data from diverse sites. However, there are usually different vegetation types or mixed vegetation
types in these sites, and little information is available on the estimation uncertainty of these models
induced by combining different vegetation types from diverse sites. In this study, we employed the
most popular one of these models and recalibrated it using datasets from two typical vegetation
types (shrub Tamarix ramosissima and arbor Populus euphratica) in arid ecosystems of northwestern
China. The recalibration was performed in the following two ways: using combined datasets from
the two vegetation types, and using a single dataset from specific vegetation type. By comparing
the performance of the two methods in ET estimation for Tamarix ramosissima and Populus euphratica,
we investigated and compared the accuracy of ET estimation at the site scale and the difference in
annual ET estimation at the regional scale. The results showed that the estimation accuracy of daily,
monthly, and yearly ET was improved by distinguishing the vegetation types. The method based
on the combined vegetation types had a great influence on the estimation accuracy of annual ET,
which overestimated annual ET about 9.19% for Tamarix ramosissima and underestimated annual ET
about 11.50% for Populus euphratica. Furthermore, substantial difference in annual ET estimation at
regional scale was found between the two methods. The higher the vegetation coverage, the greater
the difference in annual ET. Our results provide valuable information on evaluating the estimation
accuracy of regional scale ET using empirical remotely sensed ET models for arid ecosystems.

Keywords: evapotranspiration; remote sensing; arid ecosystems; Landsat; NDVI; Tamarix ramosissima;
Populus euphratica

1. Introduction

Evapotranspiration (ET) is the water transferred from land surfaces to the atmosphere through
surface evaporation and plant transpiration [1]. As a key component of the hydrological cycle, ET
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is of great significance to a wide range of water-related research and applications [2,3]. Accurate
estimates of regional scale ET are needed for sustainable water resource management, particularly for
arid ecosystems due to competing demands for water resources among agricultural irrigation, public
and domestic needs, industrial production, and ecological environments [4,5]. In recent decades, some
empirical remotely sensed ET models have been developed [6–14] and their potential for regional
scale ET estimation in arid ecosystems has been demonstrated [15–26]. These models extrapolate ET
observed or estimated at the site scale to regional scale based on the empirical relationship constructed
at the local site scale, which relates daily ET from the eddy covariance or Bowen ratio flux towers to
vegetation indices (VIs) and meteorological data [27–29]. Since the empirical relationship constructed
at the site scale plays an extremely fundamental role, its estimation accuracy directly affects the
regional scale ET estimation on a long time scale. Therefore, it is necessary to evaluate and quantify
the estimation uncertainty of these empirical remotely sensed ET models at site and regional scales.

These empirical remotely sensed ET models are usually built at the site scale in the following steps:
(1) observing the site-specific daily ET using eddy covariance or Bowen ratio flux towers; (2) collating
corresponding remotely sensed data and meteorological data such as normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), average daily land surface temperature (Ts,d), nighttime
land surface temperature (Ts,n), daily reference evapotranspiration (ET0) and maximum daily air
temperature (Ta,m), and so on; (3) combining daily datasets from diverse sites and different vegetation
types; and (4) selecting an appropriate model structure, calibrating the model’s empirical parameters
by regression analysis, and validating the model. Some representative models are summarized in
Table 1.

Table 1. Examples of empirical remotely sensed ET models developed for arid ecosystems.

Empirical Remotely Sensed ET
Models Vegetation Types References

ET = a
(
1− e−b×EVI∗

)
(Ta,m − c) + d

ET = a
(
1− e−b×EVI∗

)(
Ts,d − c

)
+ d

Saltcedar (flooded and unflooded);
Cottonwood (flooded and unflooded). [6]

ET = a
(
1− e−b×EVI∗

)(
c

1+e−(Ta,m−d)/e

)
+ f

Saltcedar (flooded and unflooded); Cottonwood (flooded and
unflooded); Mesquite woodland; Mesquite shrubland; Giant

Sacaton grassland; Dense saltcedar; Arrowweed.
[7]

ET = a
(
1− e−b×EVI

)
+ ced×Ts,n + e

Mesquite woodland; Sacaton grassland; Mixed
mesquite/sacaton shrubland. [9]

ET = a× ET0−BC × EVI∗ Saltcedar; Cottonwood; Arrowweed; Quailbush shrubs;
Screwbean Mesquite; Alfalfa. [10]

ET = ET0
[
a
(
1− e−b×EVI

)
− c

] Mesquite woodland; Mesquite shrubland; Sacaton grass;
Aafalf; Cotton; Saltcedar; Reed; Crops. [11]

ET = a
(
1− e−b×EVI∗

)
×

(
ec×Ts,n

)
+ d

Mesquite woodland; Mesquite shrubland; Sacaton grassland;
Brunchgrass; Mesquite savannah. [12]

ET = a

1+e−
ET0×EVI−b

c

Mesquite savanna; Grass; Forbs; Larrea tridentata, Parthenium
incanum; Acacia constricta; E. lehmanniana; Prosopis velutina. [13]

In these models, coefficients a, b, c, d, e, and f are the empirical parameters; ET0-BC and ET0 are the reference
evapotranspiration calculated from the Blaney Criddle formula or the Penman-Monteith equation [30]; EVI* is
the scaled EVI, which converts the lowest EVI (EVImin) in the dataset to 0 and the highest (EVImax) to 1 using the
formula EVI* = 1 − (EVImax − EVI)/(EVImax − EVImin).

Notably, in the process of obtaining the model’s empirical parameters by regression analysis, the
common practice is to calibrate empirical remotely sensed ET models using the combined daily datasets
from diverse sites that usually have different vegetation types or mixed vegetation types. However,
under the condition of frequent hydrological fluctuations induced through natural flow variations in
arid regions, different vegetation types have different water-consumption characteristics [31,32], water
use strategies [33–35], and eco-physiological regulation mechanisms [36–40]. Whether combining
datasets of different vegetation types affects the accuracy of ET estimation is a question that needs
further analysis.
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The riparian forests in the arid areas of northwestern China are typically composed of two
vegetation types: Tamarix ramosissima (shrub vegetation) and Populus euphratica (arbor vegetation) [41,42].
They are often characterized by discontinuous and plaque-like distribution in space, and have different
water-consumption characteristics [31,32]. This particular surface condition makes it possible to
calibrate empirical remotely sensed ET models using a dataset from specific vegetation type. Based
on the models for specific vegetation type, the estimation uncertainty of the commonly used models
based on combined vegetation types could be evaluated and quantified.

In this study, we first employed the most popular one of these empirical remotely sensed ET
models, and then recalibrated it based on combined vegetation types and specific vegetation type,
respectively. Finally, we investigated and compared the estimation uncertainty of the two methods at
the site and regional scales. The primary objectives of this study were to (1) evaluate the effects of
distinguishing vegetation types on the accuracy of ET estimation at the site scale; (2) investigate the
difference in annual ET estimation between the two methods at regional scale; and (3) improve the
empirical parameters of the employed ET model for two typical vegetation types (Tamarix ramosissima
and Populus euphratica) in arid ecosystems of northwestern China.

2. Materials and Methods

2.1. Models and Estimating Process

The model presented by Nagler et al. [11] in Table 1 (hereinafter referred to as the Nagler model)
was chosen to conduct this study. The Nagler model is widely used and has a high estimation
accuracy [18,20,23,43,44]. In the Nagler model, the term (1 − e−b×EVI) is derived from the Beer–Lambert
Law that has been modified to predict the absorption of light by a canopy, with −b × EVI replacing
LAI, and EVI can be adjusted to use the NDVI [11]. The empirical parameters a, b, and c are obtained
by regression analysis using the daily ET, ET0, and EVI (NDVI) datasets.

The daily ET, ET0, and NDVI datasets from Tamarix ramosissima and Populus euphratica in the lower
reaches of the Tarim River in northwestern China were used to recalibrate the empirical parameters a, b,
and c of the Nagler model. The datasets covered the period from mid-April, 2013 to late October, 2018.
We divided the datasets from Tamarix ramosissima and Populus euphratica into the calibration dataset and
validation dataset, respectively. Taking into account the relative integrity of NDVI and daily ET data
throughout the year, we selected the 2017 data of Tamarix ramosissima (21 samples) and the 2016 data of
Populus euphratica (18 samples) as their respective validation dataset, and data from the other years (60
samples for Tamarix ramosissima and 62 samples for Populus euphratica) were used as calibration dataset.
We recalibrated the empirical parameters a, b, and c using the two calibration datasets from the two
vegetation types in the following different ways: (1) using the combined calibration datasets from
Tamarix ramosissima and Populus euphratica; (2) using only the calibration dataset from Tamarix ramosissima;
and (3) using only the calibration dataset from Populus euphratica. The models corresponding to the
above three cases were called combined-vegetation-type model (CVTM), specific-vegetation-type
model for Tamarix ramosissima (SVTM-T), and specific-vegetation-type model for Populus euphratica
(SVTM-P), respectively. Furthermore, the latter two models were collectively referred to as the
specific-vegetation-type model (SVTM).

Based on the CVTM and SVTM, ET at daily, monthly, and yearly scales can be estimated for
Tamarix ramosissima and Populus euphratica at the site and regional scales. We first analyzed the accuracy
of daily, monthly, and yearly ET from CVTM and SVTM based on the above-mentioned validation
dataset at the site scale by comparing the simulation capabilities of CVTM and SVTM-T for Tamarix
ramosissima, and the simulation capabilities of CVTM and SVTM-P for Populus euphratica. Subsequently,
we investigated the difference in annual ET estimation between CVTM and SVTM-T for Tamarix
ramosissima, and between CVTM and SVTM-P for Populus euphratica at regional scale. Ultimately, we
could investigate and compare the estimation uncertainty of CVTM and SVTM for Tamarix ramosissima
and Populus euphratica, respectively.
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2.2. Site Description and Measurements

The study area is in the Tarim River Basin, which lies in northwestern China and is the largest
continental river basin in China with an area of 1.04 × 106 km2 [45] (Figure 1). The topography of the
study area is relatively flat, and the climate conditions in this region are extremely arid [46]. According
to the meteorological records of the Tikanlik Weather Station, the mean annual precipitation was
33.7 mm from 1957 to 2012. The observed maximum annual precipitation was 75.7 mm in 1974 and the
minimum annual precipitation was 3.4 mm in 2001. However, the annual potential evapotranspiration
was as high as 2000 mm [47,48]. The narrow riparian forest in the lower reaches of the Tarim River
distributes within a range of about 3 km from the river channel. Vegetation coverage is less than
0.2 in most of the riparian forest and it generally decreases with increasing distance from the river
channel [14]. The vegetation types in this area mainly consist of Tamarix (Tamarix ramosissima) thicket
and Populus (Populus euphratica) woodland. Both of the two vegetation communities are phreatophytes
that depend almost entirely on groundwater for survival because of the low precipitation [49–51].Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 19 

 

 
Figure 1. The study area (a); locations of the Tamarix transect, the Populus transect, and the Tikanlik 
Weather Station (b); locations of the Tamarix site (c,e) and the Populus site (d,f) shown against a 30-m 
standard false color Landsat image; photos of Tamarix ramosissima (g) and Populus euphratica (h). 
Among them, (e) is the partial enlargement of the blue box in (c), and (f) is the partial enlargement of 
the blue box in (d). In (c) and (e), the sky blue square is the pixel where the Tamarix flux tower is 
located, and the green box represents the appropriate footprint area (90 m × 90 m, 9 pixels) measured 
by the Tamarix flux tower. In (d) and (f), the pink square is the pixel where the Populus flux tower is 
located, and the yellow box represents the appropriate footprint area (270 m × 270 m, 81 pixels) 
measured by the Populus flux tower. 

2.3 Data and Processing 

2.3.1 Daily ET and ET0 Data 

Sensible heat flux (H), latent heat flux (LE), net radiation (Rn), and soil heat flux (G) were 
measured continuously at each site using the EC system. Data were collected every 30 min during 
the entire study period. The data processing has been described in [31] and [49] in detail. 

The quality of the measured EC data was evaluated using the energy balance ratio (EBR) method 
[52]. Due to the sparse and low canopy, the canopy storage heat and the photosynthetic energy 
consumption were ignored during the analyses, and the EBR was calculated using Equation (1). Our 

Figure 1. The study area (a); locations of the Tamarix transect, the Populus transect, and the Tikanlik
Weather Station (b); locations of the Tamarix site (c,e) and the Populus site (d,f) shown against a 30-m
standard false color Landsat image; photos of Tamarix ramosissima (g) and Populus euphratica (h). Among
them, (e) is the partial enlargement of the blue box in (c), and (f) is the partial enlargement of the blue box
in (d). In (c) and (e), the sky blue square is the pixel where the Tamarix flux tower is located, and the green
box represents the appropriate footprint area (90 m × 90 m, 9 pixels) measured by the Tamarix flux tower.
In (d) and (f), the pink square is the pixel where the Populus flux tower is located, and the yellow box
represents the appropriate footprint area (270 m × 270 m, 81 pixels) measured by the Populus flux tower.
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A typical transect and a typical site were chosen for each vegetation type to conduct this study.
The Tamarix transect and the Populus transect covered the Tamarix site and the Populus site, respectively.
The two sites were areas with relatively high vegetation coverage and relatively uniform vegetation
distribution on the two transects, respectively (Figure 1).

The Tamarix site is located at 87◦54′E, 40◦27′N, with an altitude of 846 m. The vegetation coverage
index was 0.65. The average canopy height was approximately 2 m and the leaf area index measured
in July 2013 was 1.15. The dominant species in the site is Tamarix ramosissima, with a small number of
herbs (mainly Alhagi sparsifolia and Glycyrrhiza infata) growing under the shrubs. The groundwater
table depth fluctuated between 4.4 m and 5.9 m during the observation period, and the soil is mainly
silty loam with approximately 20 cm dry sands in the surface layer.

The Populus site is located at 88◦1′E, 40◦26′N, with an altitude of 844 m. The average canopy
height was approximately 10 m. The vegetation coverage index was 0.47 and the leaf area index
measured in July 2013 was 0.57. Populus euphratica is the only species at this site. The soil textures at a
depth of 0 to 3 m and below 3 m are silty loam and sand, respectively. The groundwater table depth
fluctuated between 3.5 m and 6.3 m during the observation period.

The eddy covariance (EC) systems were deployed at the Tamarix site in June 2011 and at the
Populus site in June 2013. The EC system was installed at a height of 3.8 m in the Tamarix site and at a
height of 15 m in the Populus site (Figure 1). The instruments have been described in detail in [31,49].

2.3. Data and Processing

2.3.1. Daily ET and ET0 Data

Sensible heat flux (H), latent heat flux (LE), net radiation (Rn), and soil heat flux (G) were measured
continuously at each site using the EC system. Data were collected every 30 min during the entire
study period. The data processing has been described in [31,49] in detail.

The quality of the measured EC data was evaluated using the energy balance ratio (EBR)
method [52]. Due to the sparse and low canopy, the canopy storage heat and the photosynthetic energy
consumption were ignored during the analyses, and the EBR was calculated using Equation (1). Our
results showed that the EBR was 0.84 for the whole study period. Thus, the measured data satisfied
the accuracy requirements for further analysis [52].

EBR =

∑
(H + LE)∑
(Rn −G)

(1)

The energy balance was forced to close by augmenting both H and LE while retaining the observed
Bowen ratio [53,54]. In order to ensure accuracy of the analysis, we did not perform gap filling,
and only used data with all four components available. Hourly ET (mm h−1) was calculated by the
following formula:

ET =
LEb

L× ρw
(2)

where LEb is the latent heat (J m−2h−1) after energy balance; L is the latent heat of vaporization of water
(2.45 kJ g−1); and ρw is the water density (1 g cm−3). The daily ET (mm d−1) was the sum of the hourly
ET for one day. In the calculation process, when the hourly ET was negative, it was set to zero.

Daily ET0 was calculated from the meteorological data with the Penman-Monteith equation [30].
The meteorological data including daily temperature, pressure, wind speed, actual duration of sunshine,
and relative humidity were from the Tikanlik Weather Station (Chinese National Weather Station
number: 51765). This weather station is the closest one in the China’s National Weather Stations to our
study sites with a distance of approximately 30–40 km.
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2.3.2. Landsat OLI Imagery and Processing

We used all available Landsat OLI images during the study period. A total of 127 cloud free L1T
images with a 30 m pixel resolution were selected and downloaded from the Global Visualization
Viewer of the United States Geological Survey (USGS) [55]. The two sites fall in an area overlapped by
two adjacent Landsat scenes (paths 141 and 142, row 32), thus resulting in near weekly coverage.

Landsat L1T product processing includes a systematic geometric correction, precision correction
assisted by ground control chips, and the use of a digital elevation model (DEM) to correct parallax
errors due to terrain relief [56]. Therefore, we did not perform a geometric correction during the
pre-processing. The original digital number (DN) values were first converted to absolute at-sensor
radiances. The conversion was automatically performed by applying the OLI radiometric calibration
parameters available in the ENVI (Environment for Visualizing Images) 5.3.1 software (Exelis Visual
Information Solutions, Inc., Boulder, USA) to each band. Afterward, atmospheric correction was
performed using its FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes)
module. This is a MODTRAN (Moderate Resolution Atmospheric Transmission) based algorithm that
aims to reduce the extraneous path radiance affecting the pixel’s at-sensor radiometry (i.e., adjacency
and haze effects) while modeling the at-surface irradiance. To do so, the mid-latitude summer and
sub-Arctic summer atmospheric model was used to define the water vapor amount based on a
seasonal-latitude surface temperature model, and the rural aerosol model was selected to define the
aerosol type. In addition, the “2-band (K-T)” option was selected for aerosol retrieval in the FLAASH
module. After the atmospheric correction, the absolute at-sensor radiances were converted to a surface
reflectance value for each pixel.

2.3.3. Derivation of NDVI

The NDVI was calculated using the following equation [57] for each image:

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(3)

where ρNIR is the reflectance of near-infrared and ρRed is the reflectance of red. After completing the
NDVI calculation for all of the selected Landsat OLI images, we obtained the NDVI time series data.
In order to reduce the perturbations from varying atmospheric conditions and sun-sensor-surface
viewing geometries, the NDVI time series data need to be smoothed before being used [58,59]. In the
present study, the Savitzky-Golay filter [60] was used to smooth the NDVI time series due to its better
performance in arid ecosystems of northwestern China [61]. Two parameters must be determined
when the Savitzky-Golay filter is applied to NDVI time series smoothing. The first parameter is the
half-width of the smoothing window. Usually, a larger value of it produces a smoother result at
the expense of flattening sharp peaks. The second parameter specifies the degree of the smoothing
polynomial, which is typically set in a range from 2 to 4. A smaller value will produce a smoother
result, but may introduce bias; a higher value will reduce the filter bias, but may “over fit” the data
and give a noisier result [62]. In this study, we used the value of three for both parameters according to
the NDVI observations.

In order to comprehensively compare the simulation capabilities of CVTM and SVTM using more
observed daily ET data at the site scale and to perform comparison of the annual ET estimation at
regional scale, a daily-basis NDVI time series for 2017 of the Tamarix transect and for 2016 of the Populus
transect were needed. Therefore, we interpolated the two NDVI time series in a way that treated each
pixel individually. In the process of NDVI time series interpolation, we divided the whole year into
three stages according to local phenology and the filtered NDVI time series: Stage I was from the
beginning of the year to the beginning of the growing season (DOY 1 to DOY 120); Stage II was the
growing season (DOY 121 to DOY 300); and Stage III was from the end of the growing season to the
end of the year (DOY 301 to DOY 365 or DOY 366). Stage II was further divided into the germination
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and leaf expansion period (GEP, DOY 121 to DOY 160), the peak growing season (PGS, DOY 161 to
DOY 260), and the leaf senescence period (LSP, DOY 261 to DOY 300) [49]. For Stage II, a quadratic
function was used to fit the filtered NDVI data points with DOY, and daily NDVI could be simulated
using the fitted quadratic function. For Stage I and Stage III, the daily NDVI was assigned by the
corresponding average values respectively (Figure 2). In order to ensure that the fitted quadratic curve
of Stage II was as continuous as possible with the end point of Stage I and the starting point of Stage
III, during the fitting process, the quadratic function was forced to pass through the first and last data
points of Stage II.

Finally, we extracted the NDVI values over the footprint area (9 pixels, Figure 1e) around the
Tamarix flux tower and over the footprint area (81 pixels, Figure 1f) around the Populus flux tower,
respectively. The extraction was performed for both the filtered NDVI time series and the interpolated
NDVI time series, and the extracted NDVI values were spatially averaged for analyses at the site scale.
Figure 2 shows the comparison between the filtered NDVI and the interpolated daily NDVI throughout
2017 for the Tamarix site and throughout 2016 for the Populus site. In addition, the interpolated NDVI
time series values for pixels covering the Tamarix transect (3446 pixels) and covering the Populus
transect (7984 pixels) were extracted for the annual ET estimation of each transect.
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Figure 2. Comparison between the filtered NDVI and the interpolated daily NDVI for the Tamarix site
throughout 2017 (a) and for the Populus site throughout 2016 (b). It also shows the division of different
stages throughout the year.

2.3.4. Statistical Analyses

Statistical analyses were performed using the software OriginPro 2016 (OriginLab Corporation,
Northampton, MA, USA). Nonlinear regression equations were fitted to data points by the least squares
method and goodness of fit is reported as the determination coefficient (R2), reduced chi-sqr values,
and P-values for the regression coefficient. The reduced chi-sqr value equals the sum of the residuals
squared divided by the degrees of freedom. Smaller reduced chi-sqr values represent a better curve fit.
P < 0.001 was considered to be statistically significant.

2.4. Evaluation of Model Performance

The simulated daily ET values were compared with the observed values by the flux tower at
each site. Model performance was evaluated with metrics that included determination coefficient (R2,
Equation (4)), root mean square error (RMSE, Equation (5)), Nash-Sutcliffe efficiency (NSE, Equation (6)),
mean error (ME, Equation (7)) and maximum error (MaxError, Equation (8)). These metrics are the
most widely used by researchers to evaluate the performance of ET models [63,64].

R2 =

[∑n
i=1(ETs,i −ϕ0)(ETo,i − µ0)

]2∑n
i=1(ETs,i −ϕ0)

2 ∑n
i=1(ETo,i − µ0)

2 (4)
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RMSE =

√∑n
i=1(ETs,i − ETo,i)

2

n
(5)

NSE = 1−

∑n
i=1(ETs,i − ETo,i)

2∑n
i=1(ETo,i − µ0)

2 (6)

ME =
1
n

n∑
i=1

(ETs,i − ETo,i) (7)

MaxError = max
∣∣∣ETs,i − ETo,i

∣∣∣ (8)

where n is the total number of observation days; ETs,i is the simulated value during day I, ETo,i
is the observed value during day I, and µ0 and ϕ0 are the mean of the observed and simulated
values, respectively.

3. Results

3.1. Calibration and Validation of CVTM and SVTM

Table 2 shows the calibration results for the CVTM, SVTM-T, and SVTM-P. The minimum
determination coefficient (R2) in all models was 0.809, and the maximum reduced chi-sqr value was
0.492, indicating successful calibrations for all models. Notably, the parameters varied greatly between
the CVTM and the SVTM-T, and the parameters of the CVTM were closer to that of SVTM-P.

Table 2. Calibration results of CVTM, SVTM-T and SVTM-P.

Models a b c R2 Reduced chi-sqr

CVTM 2.364 11.681 1.597 0.809 0.492
SVTM-T 17.993 0.221 0.374 0.862 0.433
SVTM-P 2.652 9.598 1.611 0.845 0.312

The calibrated CVTM, SVTM-T, and SVTM-P were then validated using the validation dataset
of the Tamarix site and Populus site. Figure 3 shows the time series and scatter plots of the observed
and simulated daily ET at the Tamarix site (Figure 3a–c) and at the Populus site (Figure 3d–f). The time
courses of daily ET estimated by CVTM and SVTM-T for the Tamarix site (Figure 3a) and estimated
by CVTM and SVTM-P for the Populus site (Figure 3d) satisfactorily reproduced the trend of the
observations. Scatter plots of observed and simulated daily ET suggested overall, acceptable agreement,
when the CVTM (Figure 3b) and the SVTM-T (Figure 3c) were used for the Tamarix site and when the
CVTM (Figure 3e) and the SVTM-P (Figure 3f) were used for the Populus site.

3.2. Comparison of Estimates from CVTM and SVTM

3.2.1. Estimation Accuracy at Site Scale

First, the validation results of CVTM and SVTM-T for the Tamarix site, and CVTM and SVTM-P
for the Populus site (Figure 3) were compared. For the Tamarix site, the SVTM-T showed a higher
determination coefficient (R2 = 0.964), NSE (0.963) and lower RMSE (0.270 mm/d) (Figure 3c), followed
by the CVTM (R2 = 0.901, NSE = 0.886, and RMSE = 0.475 mm/d) (Figure 3b). For the Populus site,
the SVTM-P had better performance (R2 = 0.918, NSE = 0.920, and RMSE = 0.374 mm/d) (Figure 3f)
than the CVTM (R2 = 0.916, NSE = 0.887, and RMSE = 0.446 mm/d) (Figure 3e). However, the CVTM
slightly underestimated the high values for the Populus site.
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Figure 4 depicts the comparison between the observed and simulated daily ET throughout 2017
for the Tamarix site and throughout 2016 for the Populus site. Similarly, good agreements were found
between the observed and simulated daily ET values for the Tamarix site (Figure 4a−c) and for the
Populus site (Figure 4d−f) with roughly consistent time courses and the R2 values ranging from 0.864
to 0.937. There were some discrepancies in the performance between the CVTM (Figure 4b) and the
SVTM-T (Figure 4c) for the Tamarix site, and in the performance between the CVTM (Figure 4e) and the
SVTM-P (Figure 4f) for the Populus site. Overall, the SVTM-T and the SVTM-P had better performance
with a higher determination coefficient (R2), NSE, and relatively lower RMSE for both sites, and the
CVTM showed relatively poor performance and tended to underestimate at higher values of daily ET
and slightly overestimate at the low daily ET range. For the Tamarix site, the CVTM overestimated the
daily ET values at the beginning of the growing season (Figure 4a). For the Populus site, the CVTM
underestimated the daily ET values for the peak growing season (PGS) (Figure 4d).

Table 3 shows the comparison of the mean error (ME) and maximum error (MaxError) between
the simulated daily ET from CVTM, SVTM-T, SVTM-P, and the observed values. Results showed that
both ME and MaxError for SVTM-T and SVTM-P were lower than that for CVTM, indicating the better
performance of SVTM-T and SVTM-P. Interestingly, for the ME, the SVTM-T and SVTM-P showed a
small positive bias for both sites, but it was different for the CVTM, which manifested a small positive
bias for the Tamarix site and a small negative bias for the Populus site.

Table 4 shows the comparison of the total amount of ET on the monthly and yearly scales. On the
monthly scale, compared with the CVTM, the SVTM-T and SVTM-P had better performance, with
lower residual errors of monthly average ET values. The CVTM obviously overestimated ET of the
Tamarix site from March to May, and underestimated ET of the Populus site from June to September. On a
yearly scale, the CVTM had larger residual errors than the SVTM-T and SVTM-P. The residual errors of
the simulated annual ET from the SVTM-T and SVTM-P were 1.50% and 3.33%, respectively, while
that from the CVTM were 9.19% and −11.50% for the Tamarix site and the Populus site, respectively.
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Table 3. Comparison of mean error (ME) and MaxError for the CVTM, SVTM-T and the SVTM-P.

Sites Dataset N
ME (mm/d) MaxError (mm/d)

CVTM SVTM-T SVTM-P CVTM SVTM-T SVTM-P

Tamarix
site

Validation Data 21 0.197 0.040 1.399 0.646
Throughout 2017 294 0.177 0.029 3.235 2.103

Populus
site

Validation Data 18 −0.158 0.059 1.380 0.922
Throughout 2016 264 −0.163 0.047 2.336 1.870

Table 4. Comparisons of observed and simulated ET from CVTM and SVTM-T for the Tamarix site, and
from CVTM and SVTM-P for the Populus site at monthly and yearly scales.

Month
ET for Tamarix Site ET for Populus Site

N Observed
(mm)

CVTM
(mm)

SVTM-T
(mm) N Observed

(mm)
CVTM
(mm)

SVTM-P
(mm)

January 11 0.51 1.56 0.82 20 3.48 0.54 0.49
February 23 2.43 6.03 3.16 14 0.64 0.80 0.73

March 19 1.16 11.63 6.10 13 1.51 2.08 1.90
April 24 11.71 27.66 15.01 28 9.79 7.11 6.59
May 30 64.07 98.12 74.14 14 23.06 16.03 17.83
June 27 113.23 118.79 115.66 29 82.28 79.87 93.26
July 29 138.30 122.31 133.59 27 84.13 80.39 95.47

August 28 117.74 103.23 112.94 26 77.09 60.80 72.52
September 30 83.38 82.53 80.20 30 64.08 55.15 65.31

October 28 24.19 32.63 24.68 26 25.38 20.64 23.91
November 22 5.67 8.50 5.08 24 2.06 6.24 6.96
December 23 3.39 4.82 2.88 13 0.73 1.54 1.71

Average 25 47.15 51.48 47.85 22 31.18 27.60 32.22
Total 294 565.78 617.80 574.25 264 374.22 331.17 386.68

Residual
Error

52.02
(9.19%)

8.47
(1.50%)

−43.04
(−11.50%)

12.47
(3.33%)
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These results are complementary and indicate that distinguishing vegetation types can improve the
accuracy of ET estimation at the site scale, and that the combination of datasets from different vegetation
types introduced obvious errors at the beginning of the growing season of Tamarix ramosissima and at
the peak growing season of Populus euphratica.

3.2.2. Differences in Regional Scale

Figures 5 and 6 show the difference in annual ET estimation between CVTM and SVTM for the
Tamarix transect and the Populus transect, respectively. Overall, the annual ET estimated by CVTM and
SVTM-T for the Tamarix transect (Figure 5b,c) and estimated by CVTM and SVTM-P for the Populus
transect (Figure 6b,c) showed similar spatial patterns. The annual ET decreased with decreasing
vegetation coverage.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 19 
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However, substantial difference in annual ET estimation was revealed between CVTM and SVTM
for both transects (Figures 5d and 6d). For pixels over the Tamarix transect (Figure 5d), the difference
in annual ET (CVTM−SVTM-T) ranged from −333.94 to 160.31 mm yr−1. For pixels over the Populus
transect (Figure 6d), the difference in annual ET (CVTM−SVTM-P) ranged from−200.42 to 11.87 mm yr−1.
For pixels in the bare soil area, the annual ET difference of both the Tamarix transect and the Populus
transect were positive, indicating that CVTM overestimated annual ET of bare soil area when compared
with the SVTM. For pixels in the vegetation area, the higher the vegetation coverage, the greater the
difference in annual ET between CVTM and SVTM. The annual ET difference for pixels in the vegetation
area of the Populus transect was negative, suggesting that CVTM underestimated annual ET in the
vegetation area of the Populus transect compared with SVTM-P. Notably, for pixels in the vegetation
area of the Tamarix transect, the annual ET difference was negative for pixels in the upper right corner
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with higher vegetation coverage, while positive for the others with lower vegetation coverage. These
characteristics of the annual ET difference for the vegetation area of the Tamarix transect suggest that
compared with SVTM-T, CVTM overestimated annual ET in area with lower vegetation coverage and
underestimated annual ET in area with higher vegetation coverage. These results indicate that for
the area with higher vegetation coverage of Tamarix ramosissima, the underestimation of high daily ET
values by CVTM had greater impact on the annual ET than the overestimation of low daily ET values
by CVTM (Figure 4b), and that was opposite for the area with lower vegetation coverage.
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These results revealed that the empirical daily ET model built on the site scale played the dominant
role in the accuracy of ET estimation, and that a minor difference in daily ET estimation at the site scale
can lead to a large difference in annual ET estimation at regional scale.

4. Discussion

4.1. Effects of Distinguishing Vegetation Types

The estimation accuracy of ET was improved by distinguishing vegetation types at the site scale
in our study. The SVTM-T and SVTM-P achieved higher accuracy for the ET estimation of Tamarix
ramosissima and Populus euphratica, respectively, than the CVTM at the daily, monthly, and yearly scales.
Similarly, Nagler et al. [7] constructed empirical remotely sensed ET model using datasets from five
vegetation types (cottonwood, mesquite, saltcedar, giant sacaton, and arrowweed) over the western
U.S. rivers, and then estimated ET for individual vegetation type using the constructed ET model. They
reported that the simulated and observed average daily ET during the growing season were within
25% of the 1:1 line for all vegetation types, except for the arrowweed, for which simulated average
daily ET was 40% higher than the observed values. Nouri et al. [43] compared the ET estimation of the
Nagler model with a detailed soil water balance analysis in an urban parkland of Australia, which was
fully covered by kikuyu turf grasses and more than 60 species of trees and shrubs. They noted that the
estimates of the Nagler model was not accurate at the monthly scale, but errors were cancelled out
to give good agreement on an annual time step. Moreover, compared with the validation results of
SVTM in this study, the empirical ET models constructed based on combined vegetation types had
relatively poor validation accuracy. For example, Nagler et al. [10] reported an error or uncertainty of
about 20% in the average daily ET (6.2 mm d−1 with RMSE = 1.2 mm d−1); Nagler et al. [11] reported
that the average error of annual ET was 5.5%, ranging from 2.9% to 9.3% across sites; Glenn et al. [13]
reported validation results with R2 = 0.72. Nevertheless, Oliveira et al. [44] recalibrated the Nagler
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model using two year of data from a cerrado woodland site (arborous cover is about 50–70%) in
South America and validated it using another year of data. They reported that the recalibrated model
showed significant agreement with the observed ET at the daily, monthly, and yearly scale. Therefore,
combined vegetation types produced biased ET estimation.

The CVTM overestimated ET of 2017 about 9.19% for Tamarix ramosissima and underestimated ET
of 2016 about 11.50% for Populus euphratica at the site scale, mainly at the beginning of the growing
season of Tamarix ramosissima and at the peak growing season of Populus euphratica, respectively.
Furthermore, for annual ET at regional scale, there was considerable difference between CVTM and
SVTM. Compared with SVTM-P, the CVTM underestimated annual ET for vegetation areas of the
Populus transect. Compared with SVTM-T, the CVTM overestimated annual ET in areas with lower
vegetation coverage and underestimated annual ET in areas with higher vegetation coverage for
vegetation areas of the Tamarix transect. These unquestionably resulted from the model parameters
calibrated using the combined datasets from different vegetation types, which led to biased daily ET
estimation at the site scale and ultimately exaggerated for annual ET estimation at the regional scale.
In addition, Nagler et al. [7] estimated ET of five vegetation types with different water-consumption
characteristics using a model based on combined vegetation types. Their estimation results indicated
that the average daily ET of cottonwood with high water-consumption was underestimated, and that
of arrowweed with low water-consumption was obviously overestimated. Therefore, when using
these empirical remotely sensed ET models to estimate regional scale ET for highly heterogeneous
riparian zones on a large time scale, the CVTM may underestimate ET for high water-consumption
vegetation (for example, Populus euphratica) and tend to overestimate ET for low water-consumption
vegetation (for example, Tamarix ramosissima).

After distinguishing vegetation types, the SVTM-T and the SVTM-P obtained very high estimation
accuracy at the site scale. However, both the mean errors (ME) of daily ET (Table 3) and the annual ET
from SVTM-T and SVTM-P (Table 4) showed positive bias. Likewise, Nagler et al. [11] reported an
average bias of 5.5% (ranging from 2.9% to 9.3% across sites) for annual ET estimation. Nouri et al. [43]
reported that the annual ET estimated by the Nagler model had a bias of 4 mm yr−1 compared with a
detailed soil water balance analysis. Thus, this may be a systematic bias determined by the structure of
the Nagler model and needs to be further tested.

4.2. Feasibility of the Application of SVTM

Essentially, the Nagler model is a modification of the crop coefficient method [6]. The crop
coefficient approach assumes that the plant is growing under unstressed conditions [29]. In the Nagler
model, crop coefficient was replaced by a satellite-derived VI that provides information about the
actual status of the canopy at the time of measurement. VI-based methods cannot detect early signs
of plant moisture stress [29], which added scatter and uncertainty into the ET estimation [6]. In arid
ecosystems, plant transpiration dominates ET, with weak and negligible soil evaporation due to the
scant rainfall [6,49]. Moreover, the phreatophytes mainly obtain water from the capillary fringe and
groundwater [50,51], thus they have a relatively constant transpiration rate that related to groundwater
table depth and salinity [6]. Therefore, these features in arid ecosystems provide good conditions for
the application of these empirical remotely sensed ET models. In this study, the very high estimation
accuracy of the SVTM-T and SVTM-P at the site scale seems to be related to the suitable hydrological
conditions of the two vegetation types in the study area. Yuan et al. [31] reported that the groundwater
table depth is a decisive indicator of hydrological conditions in the study area. According to the
reported thresholds in [65], the groundwater table depth during the study period (see Section 2.2) is
suitable for the growth of vegetation in the lower reaches of the Tarim River.

When the SVTM is applied to other arid regions, the necessary prerequisite is to distinguish
different vegetation types. Vegetation in arid regions is relatively sparse and their spatial structure is
usually simple. As a result, it is easy and feasible to distinguish different vegetation types by using
remote sensing images [41,66,67], and some effective classification methods with high accuracy have



www.manaraa.com

Remote Sens. 2019, 11, 2856 14 of 18

been proposed [68,69]. Therefore, the estimation method based on specific vegetation type proposed in
this study is feasible in practical applications. It should be noted that it is also necessary to recalibrate
the empirical parameters of these remotely sensed ET models for the specific vegetation type of concern.

The number of remote sensing images available is crucial to the application of these empirical
remotely sensed ET models because it is the basis for achieving high-quality NDVI time series data.
Ruhoff et al. [70] reported that the vegetation index (NDVI) was the most important item among the
main inputs for ET estimation in the SEBAL algorithm. In this study, the Nagler model was used to
estimate ET based on the meteorological data and the vegetation indices (NDVI), which were derived
from Landsat OLI images. The Nagler model is an empirical ET model, which was constructed by
directly relating ET to vegetation indices (VIs) and meteorological data, and thus it is different from
the SEBAL algorithm that estimates ET using the energy balance equation. In addition, although we
interpolated the NDVI time series during the comparison between CVTM and SVTM, we still obtained
a satisfactory ET estimation (Figure 4). This may be related to the NDVI observations we used for
interpolation. Since the study area is located in the overlap of two adjacent images, we had at least
one NDVI observation every month throughout the year (Figure 2). Therefore, the number of images
available seemed to have little impact on the ET estimation in this study. Nevertheless, the 16 day
revisit cycle of the Landsat series satellites (e.g., TM/ETM+/OLI with 30 m spatial resolution) and
frequent cloud contamination in some regions limit their application for frequent ET estimation using
these empirical remotely sensed ET models [7]. On the other hand, MODIS (MODerate-resolution
Imaging Spectroradiometer) has a high temporal resolution (1 day) with the spatial resolutions of
250 m, 500 m, and 1000 m. However, it is difficult to capture spatial details necessary for monitoring
land cover and ecosystem changes in heterogeneous areas, especially for narrow riparian corridors [71].
Hence, in the process of ET estimation, appropriate spatial- and temporal-resolution NDVI data should
be selected according to the research needs.

5. Conclusions

In this study, using the Nagler model [11] and the datasets from two typical vegetation types
(Tamarix ramosissima and Populus euphratica) in arid ecosystems of northwestern China, we investigated
the effects of distinguishing vegetation types on the estimates of remotely sensed ET at site and
regional scales.

By distinguishing vegetation types, the accuracy of ET estimation was improved. The combined
vegetation types introduced errors in the ET estimation and had a great influence on the estimation
accuracy of annual ET. Furthermore, CVTM and SVTM had a substantial difference in annual ET
estimation at the regional scale, and the higher the vegetation coverage, the greater the difference
in annual ET between the CVTM and SVTM. In addition, the SVTM-T and SVTM-P had very high
estimation accuracy of daily, monthly, and yearly ET at the site scale, therefore, the calibration
parameters for SVTM-T and SVTM-P in Table 2 are recommended for the ET estimation of Tamarix
ramosissima and Populus euphratica in arid ecosystems of northwestern China. At the same time, the
estimation method based on specific vegetation type proposed in this study is feasible in practical
applications in other arid ecosystems.

Further study is recommended to investigate the impacts of distinguishing vegetation types on
the accuracy of ET estimation at the site scale using data from more sites under different vegetation
types and to indirectly evaluate the regional scale ET estimation with the aid of the groundwater model
using the measured groundwater level [72,73].
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